Finite Time Distributions of Stochastically Modeled Chemical Systems with Absolute Concentration Robustness

نویسندگان

  • David F. Anderson
  • Daniele Cappelletti
  • Thomas G. Kurtz
چکیده

Recent research in both the experimental and mathematical communities has focused on biochemical interaction systems that satisfy an “absolute concentration robustness” (ACR) property. The ACR property was first discovered experimentally when, in a number of different systems, the concentrations of key system components at equilibrium were observed to be robust to the total concentration levels of the system. Followup mathematical work focused on deterministic models of biochemical systems and demonstrated how chemical reaction network theory can be utilized to explain this robustness. Later mathematical work focused on the behavior of this same class of reaction networks, though under the assumption that the dynamics were stochastic. Under the stochastic assumption, it was proven that the system will undergo an extinction event with a probability of one so long as the system is conservative, showing starkly different long-time behavior than in the deterministic setting. Here we consider a general class of stochastic models that intersects with the class of ACR systems studied previously. We consider a specific system scaling over compact time intervals and prove that in a limit of this scaling the distribution of the abundances of the ACR species converges to a certain product-form Poisson distribution whose mean is the ACR value of the deterministic model. This result is in agreement with recent conjectures pertaining to the behavior of ACR networks endowed with stochastic kinetics, and helps to resolve the conflicting theoretical results pertaining to deterministic and stochastic models in this setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supporting Online Material for: Stochastic analysis of biochemical reaction networks with absolute concentration robustness

2 Background, terminology, and notation 2 2.1 Chemical reaction networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Deterministic chemical reaction systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Absolute concentration robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Reformulation of equ...

متن کامل

Product-form Stationary Distributions for Deficiency Zero Chemical Reaction Networks By

We consider both deterministically and stochastically modeled chemical reaction systems and prove that a product-form stationary distribution exists for each closed, irreducible subset of the state space of a stochastically modeled system (with quite general kinetics) if the corresponding deterministically modeled system (with mass-action kinetics) admits a complex balanced equilibrium. Feinber...

متن کامل

Product-form stationary distributions for deficiency zero chemical reaction networks.

We consider stochastically modeled chemical reaction systems with mass-action kinetics and prove that a product-form stationary distribution exists for each closed, irreducible subset of the state space if an analogous deterministically modeled system with mass-action kinetics admits a complex balanced equilibrium. Feinberg's deficiency zero theorem then implies that such a distribution exists ...

متن کامل

Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...

متن کامل

Algorithms for Computing Limit distributions of Oscillating Systems with Finite Capacity

We address the batch arrival  systems with finite capacity under partial batch acceptance strategy where service times or rates oscillate between two forms according to the evolution of the number of customers in the system. Applying the theory of Markov regenerative processes and resorting to Markov chain embedding, we present a new algorithm for computing limit distributions of the number cus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017